Macromolecular assemblies

In molecular self-assembly, molecules, or parts of molecules, spontaneously form ordered structures without external factors. Macromolecular assemblies consist of multiple proteins and furthermore often contain other molecules such as DNA, RNA, sugars and/or lipids. The assembly of macromolecular complexes in a cell is a highly regulated multistep process.

Mass photometry allows the characterisation of these complex particles with efficiency and accuracy, enabling the engineering of new supramolecular structures with great potential for medical research.


GroEL belongs to the family of chaperonins and thus assists in the correct folding and assembly of other proteins in the cell. It consists of 14 monomers forming a cage-like structure. Formation of this complex under different buffer conditions was monitored using mass photometry (Figure 1).



Ribosomes are macromolecular assemblies of protein and RNA that are central sites for protein synthesis. Bacterial ribosomes (in this example from E.coli) are >2 MDa in size. Magnesium ions play a subtle, yet important role in the assembly of intact complexes (70S). In the absence of magnesium, E.coli ribosomes rapidly disassemble into their 30S and 50S subunits. Mass photometry allows us to monitor this assembly (Figure 2).


Adeno-associated virus (AAV) is one of the most actively investigated gene therapy vehicles. In the presented example mass photometry resolved empty (~3.7 MDa) and DNA loaded capsids (~1 MDa shift).


Related publications

An ultra-stable gold-coordinated protein cage displaying reversible assembly

Malay at al., Nature 2019, 569(7756), 438-442

Cage-like protein assemblies have potential uses in medicine, including as vaccines and in drug delivery. In this study, mass photometry was used to follow formation of a TRAP-cage. It showed that a critical concentration of TRAP is required for effective cage formation. Above this critical concentration, the TRAP rings appear to rapidly assemble into an intermediate, partially formed cage, with the cage then forming from this intermediate.

Read more

More applications

Protein oligomerisation

Sample characterisation

Biomolecular interactions