Biomolecular interactions

Interactions between biomolecules play a key role in every biological process. Mass photometry is ideally suited to quantify interactions at low concentrations with the major advantage of detecting biological complexes present in solution. Molecular mass is a universal readout that informs on multiple properties, including homogeneity, structural integrity and activity of biomolecules and biomolecular complexes. This enables mass photometry to be used not just for simple purity assays but also for activity and binding assessment, providing a unique level of data integrity and comparability to other similar technologies.


Antigen-antibody interactions are a prime example of molecular systems that can be studied using mass photometry, which can be applied to determine binding affinities for mono- and multivalent interactions.

Figure 1 illustrates FXII – antibody binding where majority of the interaction is a 1:1 complex.



Mass photometry can be used to characterise DNA-protein complexes, which are crucial in gene expression, replication and DNA repair.

In this example, mass photometry not only allows detecting DNA binding but also provides information on how the oligomeric state of the protein changes upon DNA binding (Fig 2).

Related publications

Measuring the affinity of protein-protein interactions on a single-molecule level by mass photometry

Wu et al., Analytical Biochemistry 2020, 592, 113575

In this work, the authors show how mass photometry can be used to study multivalent complexes and quantify the affinities of different binding sites in a single measurement.

Read more

Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas
Hickman et al., eLife 2020, 9:e50004

Mass photometry was used to characterise oligomeric state of casposase alone, and in a complex with different DNA constructs.

Read more

More applications

Protein oligomerisation

Macromolecular assemblies

Sample characterisation